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In this paper, by introducing a different distribution function and starting from the Boltzmann equation as
well as the Maxwell-Boltzmann distribution, we obtain a Boltzmann Bhatnagar-Gross-Krook(BGK) equation
for thermal flows with viscous heat dissipation in the incompressible limit. The continuous thermal BGK
model is then discretized over both time and phase space to form a lattice BGK model, which is shown to be
consistent with some existing double distribution function lattice BGK models based on macroscopic govern-
ing equations. We have also demonstrated that the lattice BGK model derived theoretically in this work can be
used to simulate laminar incompressible convention heat transfer with/without viscous heat dissipation.
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I. INTRODUCTION

The lattice Bhatnagar-Gross-Krook(LBGK) method has
been widely used in various scientific and engineering com-
putations over the last decade. As a mesoscopic numerical
approach, the LBGK method numerically solves the kinetic
equation(the Boltzmann BGK equation) [1,2] for the single-
particle distribution function. In comparison with the con-
ventional numerical algorithms, the kinetic features of the
LBGK method enable it to be more effective for simulating
complex fluid systems, such as flows in porous media[3],
suspension flows[4], multiphase flows[5–12], and multi-
component flows[13–15].

Historically, the LBGK method, or more generally the
lattice Boltzmann equation(LBE) method, originates from
lattice gas automata(LGA), which mimic the microscopic
dynamics of fluids by the motion of imaginary particles on
regular lattices subject to some specific collision rules
[16–18]. But later studies[1,2] showed that the LBGK
method could be derived from the continuous Boltzmann
BGK equation. Following this idea, various lattice BGK
models for particular problems have been well constructed
[6,24,27].

On the other hand, although the LBGK method has
achieved great successes in simulating and modeling isother-
mal fluid dynamics problems, it is still a challenging problem
to construct LBGK models for thermal flows with a solid
physical foundation and with good numerical performance.
Generally, the existing LBGK models for thermal flows in
the literature fall into two categories: the multispeed models
[19–24] and the double distribution function(DDF) models
[25–29]. The multispeed models are an extension of the
LBGK models for isothermal flows, in which only the
single-particle distribution functionf is defined and a higher
order of velocity moment of this distribution function is used
to describe the temperature field. In order to recover the mac-
roscopic energy conservation equation, the multispeed

LBGK models usually employ a larger set of discrete veloci-
ties than the corresponding isothermal models, and include
higher order velocity terms in the equilibrium distribution
function (EDF). Although the physical idea behind the mul-
tispeed LBGK models is straightforward and reasonable, it is
rather onerous to derive the parameters in the EDF of such
models. Another disadvantage of the multispeed LBGK
models is that they usually suffer from severe numerical in-
stability and is only suitable for problems with a rather nar-
row temperature range[21,22]. In addition, the multispeed
LBGK models using a single relaxation time are limited to
problems with a fixed Prandtl number, which departs far
from the real physics. Although some methods have been
proposed to overcome these problems(e.g.,[22] for the im-
provement of the stability;[30] for the problem with variable
Prandtl numbers), the drawbacks of the multispeed models
still greatly limit their practical applications.

Alternatively, the double distribution function models uti-
lize an additional distribution function, instead of the original
single-particle distribution function, to describe the evolution
of the temperature field[25–29]. It has been shown that the
DDF LBGK models are simple and applicable to problems
with different Prandtl numbers. More importantly, the DDF
LBGK models have better numerical stability than the mul-
tispeed models. The reliability of the DDF models has been
validated by many authors(e.g.,[25–29]).

However, it should be pointed out most of the previous
DDF LBGK models were proposed based on the observation
that temperature is governed by an advection-diffusion equa-
tion under the conditions that both the compression work and
viscous heat dissipation are negligible[25,26,28,29]. In these
models, the temperature is regarded as a passive scalar. Early
studies[26] even treated the temperature as a component of
the mixture. As a result, the introduced temperature or inter-
nal energy distribution function became independent of the
original distribution function. In the previous DDF LBGK
models, the additional evolution equation and the corre-
sponding EDF were developed rather heuristically as long as
the macroscopic energy equation can be recovered. Further-
more, these models are usually constructed based on the as-*Corresponding author. Electronic address: metzhao@ust.hk
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sumption that both the compression work and the viscous
heat dissipation can be neglected. Although it is reasonable
to neglect the compression work in the incompressible limit,
the viscous heat dissipation may have a significant effect on
the temperature field, especially for flows of high Prandtl
number fluids or flows with a high Eckert number. To our
best knowledge, few of the previous DDF LBGK models,
except the one proposed by Heet al. [27], take into account
the effect of viscous heat dissipation. However, the rest tem-
perature EDF in the model by Heet al.always takes negative
values; and this model is rather complicated in comparison
with other DDF models even in the case when the compres-
sion work and the viscous heat dissipation are negligible.

The objective of this work is to develop a lattice BGK
model for thermal flows with viscous heat dissipation in the
incompressible limit. To this end, we first introduce a distri-
bution function related to the original single-particle distri-
bution function to describe the temperature field, and then
derive the continuous thermal lattice BGK model starting
from the Boltzmann equation and the Maxwell-Boltzmann
distribution, based on which a lattice BGK model is obtained
for thermal flows with viscous heat dissipation in the incom-
pressible limit. The proposed LBGK model is simple and
robust in comparison with other existing DDF LBGK models
for thermal flows with or without viscous heat dissipation in
the incompressible limit. Moreover, we also show theoreti-
cally that most of the existing DDF LBGK models that were
usually developed based on the macroscopic governing equa-
tions can be derived from our continuous model.

The rest of the article is organized as follows. In Sec. II, a
temperature distribution function based on the original
single-particle distribution function is defined, and its evolu-
tion equation together with the equilibrium distribution func-
tion is derived from the Boltzmann equation as well as
Maxwell-Boltzmann distribution. In Sec. III, we derive the
corresponding thermal lattice BGK model based on the re-
sults obtained in the previous sections. It is shown that many
existing heuristic DDF LBGK models are consistent with our
results. In Sec. IV, we employ our model to simulate several
classical heat transfer problems, and finally some conclu-
sions are drawn in Sec. V.

II. CONTINUOUS BGK EQUATIONS
FOR THERMAL FLOWS

We start with the derivation of the continuous BGK equa-
tions for thermal flows from the continuous Boltzmann equa-
tion and the Maxwell-Boltzmann distribution.

A. Temperature distribution function and its evolution
equation

In kinetic theory, the Boltzmann equation, which de-
scribes the evolution of the single-particle distribution func-

tion f̂st ,rW ,cWd, is given by[31]

] f̂

]t
+ cW ·

] f̂

]rW
=

]ef̂

]t
, s1d

wheret, rW, andcW denote the time, the particle position, and

the particle velocity, respectively, and]ef̂ /]t is the rate of

change inf̂ due to binary collisions. Note that the effect of
the external force field is not included in Eq.(1) (see[6,32]
for the case when the effect of the external force field is
included). The macroscopic variables, such as the densityr,
velocity uW, and temperatureT, are defined, respectively, as

r =E f̂ dcW , s2d

ruW =E f̂cW dcW , s3d

and

DrRT

2
=E 1

2
f̂scW − uWd2dcW , s4d

whereD is the space dimension. Here, without losing gener-
ality, we focus on three-dimensional problemssD=3d. Equa-
tions (2)–(4) indicate that the densityr, velocity uW, and tem-
peratureT, are related, respectively, to the zeroth, the first,

and the second moments of the distribution functionf̂ on the

mesoscopic scale. Generally, the collision term]ef̂ /]t in the
Boltzmann equation is rather complicated and hence simpli-
fication is needed in practical applications, provided that the

basic features of]ef̂ /]t are retained. In fact, the well-known
Bhatnagar-Gross-Krook model[33] originates from this
need, which approximates the collision process as a relax-
ation to the local equilibrium

]ef̂

]t
= −

1

l̂
s f̂ − f̂ eqd, s5d

wherel̂ is the relaxation time andf̂ eq is the local Maxwell-
Boltzmann equilibrium distribution function[31] given by

f̂ eq= rs2pRTd−3/2expf− scW − uWd2/2RTg, s6d

with R representing the gas constant.
It can be shown that the Boltzmann equation given by Eq.

(1) with the BGK approximation given by Eq.(5) can re-
cover the correct macroscopic continuity, momentum, and
energy equations. However, the resulting Prandtl number of
the system is fixed as a constant. This disadvantage is actu-
ally caused by the use of a single relaxation time to approxi-
mate the real collision process. In fact, as pointed out in[34],
the relaxation time of energy carried by the particles to its
equilibrium is different from that of momentum. This is why
the original BGK model with a single relaxation time is in-
adequate to model a process involving both momentum and
energy transport with different Prandtl numbers. This prob-
lem can be overcome by introducing two distinct relaxation
times to characterize momentum and energy transport, re-
spectively[34]. Motivated by this idea, we propose a two-
relaxation-time, two-distribution-function BGK model which
directly separates the energy transport from the momentum
transport. In this model, we use a BGK equation with a re-
laxation timel for a density distribution functionf to model
momentum transport, while using another BGK equation
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with a relaxation timelt for a different distribution function
g to model energy transport. The first BGK equation describ-
ing momentum transport can be written as

]f

]t
+ cW ·

]f

]rW
= −

1

l
sf − feqd, s7d

where

feq= f̂ eq= rs2pRTd−3/2expf− scW − uWd2/2RTg. s8d

Note that we have replacedf̂ with f and l̂ with l to distin-
guish the momentum BGK model given by Eqs.(7) and (8)
from the original one, given by Eqs.(1) and (5), which de-
scribes both the momentum and energy transport with a
single relaxation time.

To obtain the second BGK equation modeling energy
transport, we first multiply both sides of the Boltzmann
equation given by Eq.(1) by a factor,scW −uWd2/ s3Rd, to give

]ĝ

]t
+ cW ·

]ĝ

]rW
=

scW − uWd2

3R

]ef̂

]t
+ R̂, s9d

where

ĝ =
scW − uWd2

3R
f̂ , s10d

R̂ = − f̂
2scW − uWd

3R
·F ]uW

]t
+ ScW ·

]

]rW
DuWG . s11d

Equation(10) indicates thatĝ is not an independent variable
but related to the original single-particle distribution function

f̂. A comparison between Eqs.(4) and (10) shows thatĝ
represents energy carried by the particles. In this sense, Eq.
(9) virtually describes the energy transport process. In a man-
ner similar to the treatment of the collision operator for mo-
mentum transport, the collision integral in Eq.(9) can also be
modeled by a BGK approximation with a relaxation timelt
that represents the relaxation process of energy. With this
approximation, we obtain another BGK equation:

]g

]t
+ cW ·

]g

]rW
= −

1

lt
sg − geqd + R, s12d

where

geq=
scW − uWd2

3R
f̂eq=

scW − uWd2r

3Rs2pRTd3/2 expf− scW − uWd2/2RTg,

s13d

andR has the same expression asR̂ with f̂ and f̂ eq replaced
by f and feq, respectively. Note that the variableĝ in Eq. (9)
is replaced by the variableg because of the BGK assumption
in Eq. (12). The macroscopic variables can thus be redefined
with f andg as

r =E f dcW , s14d

ruW =E fcW dcW , s15d

and

rT =E g dcW . s16d

Since Eq.(16) indicates that the temperature is the zeroth
moment ofg, hereafter we will refer tog as the temperature
distribution function. It is worth mentioning that Eq.(4) can
alternatively be rewritten as[27]

r« =E 1

2
f̂scW − uWd2dcW =E g8dcW , s17d

whereg8=scW −uWd2f̂ /2. Equation(17) implies that the macro-
scopic internal energy« includes the translational kinetic en-
ergy of the particles only. This is true for an ideal gas. For
real gases, however, the internal energy must include the
rotational kinetic energy, vibrational energy, and internal po-
tential energy of the particles, in addition to the translational
kinetic energy shown in Eq.(17). Therefore, Eq.(17) holds
for an ideal gas only. However, the temperature distribution
function g has no such limitation.

Equations(7), (8), (12), and (13) constitute a continuous
Boltzmann BGK model for thermal flows. Through the
Chapman-Enskog procedure[31], the macroscopic conserva-
tion equations of mass and momentum can be derived from
Eq. (7):

]r

]t
+

]

]rW
· sruWd = 0, s18d

]sruWd
]t

+
]

]rW
· sruWuWd = −

]

]rW
p +

]

]rW
· PW

W
, s19d

and the macroscopic conservation equation of energy can be
derived from Eq.(12):

]srcvTd
]t

+
]

]rW
· srcvuWTd =

]

]rW
·Sk

]T

]rW
D − pS ]

]rW
·uWD + PW

W
:

]

]rW
uW ,

s20d

where the thermal conductivityk=5ltR
2T/2 and PW

W
repre-

sents the stress tensor.
The above analysis indicates that the thermal flows can be

described by the two Boltzmann BGK-like equations Eqs.
(7) and (12), which provide a base for developing thermal
lattice Boltzmann BGK models. In fact, Heet al. [27] has
proposed such a model recently based on a similar BGK
model. However, we notice that the BGK-like equation(12)
can be further simplified. To this end, we rewrite Eq.(11) as
R=RI +RII +RIII , with

RI = − f
2scW − uWd

3R
·F ]uW

]t
+ SuW ·

]

]rW
DuWG , s21d
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RII = − feq 2

3R
scW − uWdscW − uWd:

]

]rW
uW , s22d

and

RIII = − sf − feqd
2

3R
scW − uWdscW − uWd:

]

]rW
uW . s23d

It is well known that in the LBGK method the Mach number
is required to be small, implying that the fluid is nearly in-
compressible. Under such a circumstance, the second term
on the right hand side of Eq.(20), representing the compres-
sion work, can thus be neglected. Note that the compression
work in Eq. (20) results virtually from the termRII given by
Eq. (22) [27]. Hence, for thermal flows at small Mach num-
bers considered in this work, Eq.(12) can be simplified as

]g

]t
+ cW ·

]g

]rW
= −

1

lt
sg − geqd + RI + RIII . s24d

Moreover, it can be shown that the zeroth moment of the
term RI vanishes, i.e.,

E RIdcW = 0,

which implies thatRI itself has no contribution to the tem-
perature equation. However, it should be pointed out that the
elimination of RI would create an additional term, corre-
sponding to the first moment ofRI, in the resulting macro-
scopic temperature equation. Further analysis indicates that
this additional term is of order Ma2 compared with the heat
conduction term, which is negligible for low Mach number
flows. Therefore, the final BGK equation for the temperature
distribution functiong now is simplified to

]g

]t
+ cW ·

]g

]rW
= −

1

lt
sg − geqd + RIII . s25d

It is shown that in the incompressible limit we can use Eq.
(25) to model the macroscopic energy equation for thermal
flows with viscous heat dissipation that takes the same form
as Eq.(20) but without the compression work term(see the
Appendix for details).

It is noted that for low Prandtl number fluids or flows with
small Eckert number, the viscous heat dissipation becomes
less important and can also be neglected in many engineering
applications. Under these situations, we can directly drop the
term RIII in Eq. (25) to obtain

]g

]t
+ cW ·

]g

]rW
= −

1

lt
sg − geqd, s26d

which represents the evolution equation of the temperature
distribution function for the case when the viscous heat dis-
sipation is negligible.

B. The equilibrium distribution functions
for low Mach number

In Sec. II A, we have developed a continuous thermal
Boltzmann BGK model, i.e., Eq.(25), for thermal flows with

viscous heat dissipation in the incompressible limit. We have
also shown this model can further reduce to Eq.(26) for the
case when the viscous heat dissipation is negligible. The
EDF geq for the temperature distribution functiong in both
models is given by Eq.(13), which is now simplified as
follows.

For low Mach number flows, the density EDFfeq given
by Eq. (8) and the temperature EDFgeq given by Eq.(13)
can be expanded as a Taylor series up touW2:

feq= rS 1

2pRT
D3/2

expS−
cW2

2RT
DF1 +

scW ·uWd
RT

+
scW ·uWd2

2R2T2 −
uW2

2RT
G

s27d

and

geq= rTS 1

2pRT
D3/2

expS−
cW2

2RT
DF cW2

3RT
+ S cW2

3RT
−

2

3
D scW ·uWd

RT

+ S cW2

3RT
−

4

3
D scW ·uWd2

2R2T2 − S cW2

3RT
−

2

3
D uW2

2RT
G . s28d

Since the polynomial of the density EDFfeq given by Eq.
(27) has been well documented, we focus on the discussion
of the expanded series ofgeq. First, we regroup Eq.(28) as

geq= rTS 1

2pRT
D3/2

expS−
cW2

2RT
DF1 +

scW ·uWd
RT

+
cWcW:uWuW

2R2T2

−
uW2

2RT
G + rTS 1

2pRT
D3/2

expS−
cW2

2RT
DF cW2

3RT
− 1G

+ rTS 1

2pRT
D3/2

expS−
cW2

2RT
DFS cW2

3RT
−

5

3
D scW ·uWd

RT

+ S cW2

3RT
−

7

3
D cWcW:uWuW

2R2T2 − S cW2

3RT
−

5

3
D uW2

2RT
G . s29d

It can be readily proved that the zeroth through second order
moments of the summed terms in the last square brackets on
the right side of Eq.(29) vanish. Moreover, we can also
prove that the zeroth and first order moments of the summed
terms in the second square brackets in the right side of Eq.
(29) are zero, and the second order moment is only related to
the macroscopic thermal conductivityk. Thus, excluding this
term only leads to a change in the thermal conductivity, from
k=5rltR

2T/2 to k= 3
2rltR

2T. Clearly, the only difference is
the constant in front ofrltR

2T, which can be absorbed by
manipulating the parameter,lt, in the numerical implemen-
tation. Therefore, we can drop the terms in the last two
square brackets on the right side of Eq.(29) together to sim-
plify Eq. (29) as

geq= rTS 1

2pRT
D3/2

expS−
cW2

2RT
D

3F1 +
scW ·uWd

RT
+

scW ·uWd2

2R2T2 −
uW2

2RT
G

= Tfeq, s30d

which indicates that the temperature EDFgeq is related to the
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density EDF,feq, through the temperatureT. On the other
hand, it should be recognized that the inclusion of the terms
in the second square brackets on the right side of Eq.(29)
makes the temperature EDF negative forcW =0 [27], which
contradicts the physical definition of a distribution function.

For low Mach number flows, the temperature EDF given
Eq. (30) can further be simplified by neglecting the terms of
Osu2d to give

geq= rTS 1

2pRT
D3/2

expS−
cW2

2RT
DF1 +

scW ·uWd
RT

G . s31d

The simplification from Eq.(30) to Eq. (31) can be justified
by comparing the zeroth to second order moments of the
EDFs given by Eqs.(30) and(31). It can be proved that the
zeroth and first order moments of both EDFs are identical;
and the second order moments of the two EDFs differ only in
terms with the order of Ma2. Therefore, in the incompressible
limit it is reasonable to neglect the terms ofOsu2d in the EDF
given by Eq.(30).

In summary, at this point we have obtained a continuous
thermal BGK model for thermal flows in the incompressible
limit, where the evolution equation for the density distribu-
tion function f is

]f

]t
+ cW ·

]f

]rW
= −

1

l
sf − feqd, s32d

with

feq= rS 1

2pRT
D3/2

expS−
cW2

2RT
D

3F1 +
scW ·uWd

RT
+

scW ·uWd2

2R2T2 −
uW2

2RT
G , s33d

and the evolution equation for the temperature distribution
function g is

]g

]t
+ cW ·

]g

]rW
= −

1

lt
sg − geqd + RIII , s34d

with

RIII = − sf − feqd
2

3R
scW − uWdscW − uWd:

]

]rW
uW s35d

and

geq= rTS 1

2pRT
D3/2

expS−
cW2

2RT
DF1 +

scW ·uWd
RT

G . s36d

For the case when the viscous heat dissipation is negligible,
the evolution equation for the temperature distribution func-
tion g reduces to

]g

]t
+ cW ·

]g

]rW
= −

1

lt
sg − geqd, s37d

where the EDFgeq is still given by Eq.(36).

III. THERMAL LATTICE BGK MODEL

In this section, we will discretize the Boltzmann BGK
equations derived in the preceding section over the velocity
spaceVscWd and physical spaceRst ,rWd to form a lattice BGK
model for thermal flows with viscous heat dissipation in the
incompressible limit. First, we discuss the discretization of
the velocity space. Following the procedure proposed by He
and Luo [1,2], we first obtain the two-dimensionalsD=2d
discrete velocity version of Eqs.(32) and (34) as

]f i

]t
+ cW i ·

]f i

]rW
= −

1

l
sf i − f i

eqd s38d

and

]gi

]t
+ cW i ·

]gi

]rW
= −

1

lt
sgi − gi

eqd + Ri
III , s39d

where f i andgi are the distributions in terms of the discrete
velocities. Ri

III =−s1/Rdsf i − f i
eqdscW i −uWdscW i −uWd :]uW /]rW and the

discrete velocitiescW i are given by[35]

cW i = 5 s0,0d, i = 0,

c„cosfsi − 1dp/2g,sinfsi − 1dp/2g…, i = 1,2,3,4,

Î2c„cosfs2i − 9dp/4g,sinfs2i − 9dp/4g…, i = 5,6,7,8,
6

s40d

with c=Î3RT. The corresponding discrete EDFsf i
eq andgi

eq

can be obtained from Eqs.(33) and (36) as follows:

f i
eq= wirF1 +

scW i ·uWd
cs

2 +
scW i ·uWd2

2cs
4 −

uW2

2cs
2G s41d

and

gi
eq= wirTF1 +

scW i ·uWd
cs

2 G , s42d

wherecs=ÎRT is the sound speed, andw0=4/9, wi =1/9 for
i =1–4, andwi =1/36 for i =5–8.Note that if we start from
Eq. (30) instead of Eq.(36), the EDFgi

eq will be obtained:

gi
eq= wirTF1 +

scW i ·uWd
cs

2 +
scW i ·uWd2

2cs
4 −

uW2

2cs
2G , s43d

which differs from that given by Eq.(42) in the last two
terms of order Ma2, just as in their continuous counterparts.
The macroscopic variables are now defined by

r = o
i=0

8

f i, ruW = o
i=0

8

f icW i, rT = o
i=0

8

gi . s44d

The above discretization procedures can also be extended to
three-dimensional problems. Taking the three-dimensional
27-bit lattice model as an example, the corresponding dis-
crete velocities are[1,2]
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cW i =5
s0,0,0d, i = 0,

s±1,0,0dc,s0, ± 1,0dc,s0,0, ± 1dc, i = 1, . . . ,6

s±1, ± 1,0dc,s±1,0, ± 1dc,s0, ± 1, ± 1dc, i = 7, . . . ,18

s±1, ± 1,0dc, i = 19, . . . ,26
6 s45d

and the weights appearing in the EDFs arew0=8/27, wi
=2/27 for i =1–6,wi =1/54 for i =7–18, andwi =1/216 for
i =19–26. The term associated with the viscous heat dissipa-
tion in the discrete velocity BGK equation is given by

Ri
III = − s2/3Rdsf i − f i

eqdscW i − uWdscW i − uWd:
]uW

]rW
. s46d

Note that the above discrete velocity evolution equations are
still continuous in the physical spaceRst ,rWd. Applying the
first order forward Euler scheme in time and the first order
upwind scheme in space to both equations(38) and(39), we
obtain the following LBGK model:

f ist + Dt,rW + cWDtd − f ist,rWd = − vff ist,rWd − f i
eqst,rWdg, s47d

gist + Dt,rW + cWDtd − gist,rWd = − vtfgist,rWd − gi
eqst,rWdg + DtRi

III ,

s48d

wherev=Dt /l is the dimensionless relaxation parameter for
f i and vt=Dt /lt is the dimensionless relaxation parameter
for gi.

Note that the above LBGK equations(47) and(48) are of
only first order accuracy in both space and time for the con-
tinuous discrete velocity equations. However, the accuracy
can be improved to second order by absorbing the first order
discrete errors into the physical shear viscosityn and the
thermal conductivityk, respectively. In fact, we can derive
the following macroscopic equations from the two LBGK
equations (47) and (48) through the Chapman-Enskog
procedure:

]r

]t
+

]

]rW
· sruWd = 0, s49d

]sruWd
]t

+
]

]rW
· sruWuWd = −

]

]rW
p +

]

]rW
· srnSW

Wd, s50d

]rcnT

]t
+

]

]rW
· srcnuWTd =

]

]rW
·Sk

]T

]rW
D + srnSW

Wd:
]

]rW
uW , s51d

where n and k are now given bys1/v−0.5dcs
2Dt and

rcns1/vt−0.5dcs
2Dt, respectively. Similarly, from Eqs.(32)

and(37), we also obtain the following discrete velocity equa-
tions for thermal flows without viscous heat dissipation:

]f i

]t
+ cW i ·

]f i

]rW
= −

1

l
sf i − f i

eqd s52d

and

]gi

]t
+ cW i ·

]gi

]rW
= −

1

lt
sgi − gi

eqd, s53d

with the discrete EDFsf i
eq and gi

eq given by Eqs.(41) and
(42), which can be discretized to obtain the following LBGK
model:

f ist + Dt,rW + cWDtd − f ist,rWd = − vff ist,rWd − f i
eqst,rWdg, s54d

gist + Dt,rW + cWDtd − gist,rWd = − vtfgist,rWd − gi
eqst,rWdg.

s55d

Note that in the incompressible limit, for thermal flows with-
out viscous heat dissipation, the LBGK model given by Eqs.
(54) and (55) together with the discrete EDFsf i

eq and gi
eq

given by Eqs.(41) and (42) or (43) is consistent with those
reported in the literature(e.g.,[25,26,29]), which were con-
structed based on the macroscopic conservation equations,
rather than starting from the Boltzmann BGK equation.

IV. NUMERICAL SIMULATIONS

In the previous section, we have derived a DDF LBGK
model for incompressible thermal flows with viscous heat
dissipation from the Boltzmann equation. In this section we
shall apply the proposed model to simulate heat transfer in
Couette flow and in Poiseuille flow with viscous heat dissi-
pation to validate the accuracy of the model.

A. Heat transfer in Couette flow with the viscous heat
dissipation

We first present the simulation results of heat transfer in
Couette flow. Consider an incompressible and viscous fluid
between two infinite parallel flat plats, separated by a dis-
tance ofD. The upper plate at temperatureTh moves at speed
U, and the lower plate at temperatureTl sTh.Tld is statio-
nery. The exact solution of this problem is given by

u = y * +
Pr Ec

2
y * s1 − y * d, s56d

whereu=sT−Tld / sTh−Tld, y* = y/D; Pr=n /a is the Prandtl
number, and Ec=U2/cpsTh−Tld is the Eckert number, witha,
n, andcp representing the thermal diffusivity, kinematic vis-
cosity, and specific heat, respectively.

In simulations, periodic boundary conditions were applied
to the inlet and outlet and the nonequilibrium extrapolation
method[36] was applied to the two plates. The central dif-
ference scheme was adopted to discretize the termRi

III .
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We carried out the simulation on an 80380 mesh for
Ec=16.0 and Pr ranging from 0.01 to 1.0 and a 1303130
mesh for Ec=16.0 and Pr=2.0. The final dimensionless tem-
perature profiles with different Pr Ec are compared with the
exact solution, Eq.(56), in Fig. 1. It is shown that for small
values of Pr Ec, temperature varies almost linearly along the
direction perpendicular to the plates. This means that in com-
parison with heat conduction, the effect of the viscous heat
dissipation is rather weak. As Pr Ec increases, the tempera-
ture profile deviates from the linear distribution. In particu-
lar, when Pr Ec.2.0, the maximum temperature of the fluid
even exceeds the temperature at the upper plate. We can see
from Fig. 1 that the numerical results by the model proposed
in this work are in an excellent agreement with the exact
solution. It is also worth mentioning that our model can also
be used to simulate the problem at rather high Prandtl num-
ber. For instance, in Fig. 2 we show the numerical results for
Pr=100 and Ec=1.0. It is seen that the numerical results are
in good agreement with the analytical solution even for such
a high Prandtl number fluid. This shows that our model pos-
sesses good numerical performance over a wide range of
Prandtl number.

B. Heat transfer in Poiseuille flow with viscous heat
dissipation

Poiseuille flow with viscous heat dissipation is another
classical heat transfer problem. Unlike Couette flow, in this
case, the parallel plates are all stationery and the incompress-
ible and viscous fluid flow between the plates is driven by a
constant pressure difference −dp/dx along the direction par-
allel to the plates. It is well known that for Poiseuille flow
with viscous heat dissipation, the macroscopic velocity dis-
tributes parabolically as

u

U
=

3

2
F1 −S2y

D
− 1D2G , s57d

and the temperature distributes as

T − Tl

Th − Tl
=

y

D
+

3

4
Pr EcF1 −S2y

D
− 1D4G , s58d

where D represents the width between the plates,y repre-
sents the distance from the surface of the bottom plate, and
U=sdp/dxdD2/12m is the average velocity. In simulations,
we again applied the periodic boundary conditions to both
the inlet and outlet of the channel, and the nonequilibrium
extrapolation method to the two plates. As tof i’s at the sur-
face of the plates, we adopted the bounce back rule. Mean-
while, the dimensionless relaxation timev is chosen to be
1.25 and the density of the working fluid is set to be 1.0.
Again, the central difference scheme was applied to dis-
cretizeRi

III .
We carried out simulations on an 80380 mesh grid for

Pr Ec=0.0, 0.375, 3.0, and a 1303130 mesh grid for Pr Ec
=6.0. Figure 3 presents the comparison between the numeri-
cal results and the analytical solution, given by Eq.(58).
From Fig. 3, it can be observed that the numerical results are
in good agreement with the analytical solution for all the
cases.

V. CONLUSION

In this paper, we have proposed a lattice BGK model for
thermal flows with viscous heat dissipation in the incom-
pressible limit. In this model, a temperature distribution
function g is defined to represent the temperature field. The
evolution equation and the EDF of this distribution function
have been directly derived from the Boltzmann equation and
the Maxwell-Boltzmann distribution. The resulting DDF
LBGK model with two relaxation times can recover the cor-
rect macroscopic conservation equations for thermal flows
with viscous heat dissipation in the incompressible limit and
ensure that the EDF for each discrete velocity is non-
negative. We have further demonstrated that for the case
when viscous heat dissipation is negligible, our thermal lat-

FIG. 1. Dimensionless temperature profile in Couette flow for Pr
Ec5(a) 0.16, (b) 2.0, (c) 4.0, (d) 8.0, (e) 16.0, (f) 32. Solid line,
analytical solution; *, numerical results.

FIG. 2. Dimensionless temperature profile in Couette flow for
Pr=100 and Ec=1.0. Solid line, analytical solution; *, numerical
results.
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tice BGK model can reduce to a simple form, which is con-
sistent with those reported in the literature. We have also
carried out the numerical simulations of heat transfer in both
Couette and Poiseuille flows to validate our thermal lattice
BGK model. The numerical results are all in good agreement
with the analytical solutions. It has also been shown that this
thermal lattice BGK model can also be applied in rather high
Prandtl number flows and gives a reasonable accuracy.
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APPENDIX: RECOVERING THE MACROSCOPIC
CONSERVATION EQUATIONS THROUGH THE

CHAPMAN-ENSKOG PROCEDURE

In the appendix, we present the detailed mathematic deri-
vation of the macroscopic conservation equations of mass,
momentum, and energy from Eqs.(7) and (25) through the
Chapman-Enskog procedure[31]. Without loss of generality,
we discuss the three-dimensional case. First, we introduce
the following multiscale expansion:

f = f s0d + «f s1d + «2f s2d + ¯ , sA1d

g = gs0d + «gs1d + «2gs2d + ¯ , sA2d

]

]t
= «

]1

]t
+ «2]2

]t
, sA3d

]

]rW
= «

]1

]rW
, sA4d

where « is a small parameter proportional to the Knudsen
number. Substituting Eqs.(A1)–(A4) into Eqs.(7) and (25),

we can obtain a series of equations in terms of the order of«:

«0: f s0d = feq, sA5d

«1:
]1f s0d

]t
+ cW ·

]1f s0d

]rW
= −

1

l
f s1d, sA6d

«2:
]2f s0d

]t
+

]1f s1d

]t
+ cW ·

]1f s1d

]rW
= −

1

l
f s2d sA7d

and

«0: gs0d = geq, sA8d

«1:
]1g

s0d

]t
+ cW ·

]1g
s0d

]rW
= −

1

lt
gs1d, sA9d

«2:
]2g

s0d

]t
+

]1g
s1d

]t
+ cW ·

]1g
s1d

]rW
= −

1

lt
gs2d

− f s1d 2

3R
scW − uWdscW − uWd:

]1

]rW
uW . sA10d

From Eqs.(A5) and (A8) and the definitions offeq and geq

given by Eqs.(8) and (13), we can obtain the following
moments off srd andgsrd,

E f s0ddcW = r, E f srddcW = 0 for r = 1,2, . . . , sA11d

E f s0dcW dcW = ruW, E f srdcW dcW = 0 for r = 1,2, . . . ,

sA12d

E gs0ddcW = rT, E gsrddcW = 0 for r = 1,2, . . . , sA13d

E gs0dcW dcW = ruWT, sA14d

E f s0dcWcW dcW =E f s0dCW CW dcW + ruWuW, E f s0dCW CW dcW = pIW
W
,

sA15d

whereCW , the peculiar velocity, is defined ascW–uW.
With the help of Eqs.(A11)–(A14), we can obtain the

macroscopic mass, momentum, and energy equations in the
first order of« by taking moments of Eq.(A6) and (A9) as

]1r

]t
+

]1

]rW
· sruWd = 0, sA16d

]1sruWd
]t

+
]1

]rW
· sruWuWd = −

]1

]rW
p, sA17d

FIG. 3. Dimensionless temperature profile in Poiseuille flow for
Pr Ec5(a) 0, (b) 0.375,(c) 3.0, (d) 6.0. Solid line, analytical solu-
tion; *, numerical results.
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]1srcnTd
]t

+
]1

]rW
· srcvuWTd = 0, sA18d

wherecn=3R/2 is the specific heat at constant volume. On
the other hand, from Eqs.(A6) and (A9) we can obtain

f s1d = − lS ]1f s0d

]t
+ cW ·

]1f s0d

]rW
D , sA19d

gs1d = − ltS ]1g
s0d

]t
+ cW ·

]1g
s0d

]rW
D . sA20d

Using the results(A16)–(A18), and substituting Eqs.(8) and
(13) into Eqs.(A19) and(A20), respectively, we can rewrite
f s1d andgs1d as

f s1d = − lf s0dHF CW 2

2RT
− S3

2
+ 1DGCW ·

]1 lnsTd
]rW

+SCW CW

RT
−

CW 2IW
W

3RT
D:

]1

]rW
uWJ sA21d

and

gs1d = − ltg
s0dHF CW 2

2RT
− S3

2
+ 1DGCW ·

]1 lnsTd
]rW

+ SCW CW

RT
−

CW 2

3RT
IW
WD:

]1

]rW
uW −

2CW

CW 2
·S ]1uW

]t
+ uW ·

]1

]rW
uWD

−
2CW CW

CW 2
:
]1

]rW
uWJ , sA22d

whereIW
W

is the unity tensor.
With these results, we can obtain the macroscopic mass,

momentum, and energy equations in the second order of« by
taking moments of Eq.(A7) and (A10) as

]2r

]t
= 0, sA23d

]2sruWd
]t

−
]1

]rW
· srndSWW1 = 0, sA24d

]2srcnTd
]t

=
]1

]rW
·Sk

]1T

]rW
+ FI + uWFIID + PW

W
:
]1

]rW
uW +

]1

]t
FII ,

sA25d

where the second term on the right hand side of Eq.(A24),

−s]1/]rWd ·srndSWW1, results froms] /]rWd ·ecWcW f s1ddcW, and denotes
the stress experienced by the fluid;n=lRT is the shear vis-

cosity, andSW
W

1=]1uW /]rW+s]1uW /]rWdT− 2
3fs]1/]rWd ·uWgIWW is the ten-

sor associated with the velocity gradients. In Eq.(A25), k

=5rltR
2T/2 represents the thermal conductivity, andPW

W

=srndSWW1 represents the stress tensor.FI andFII are two addi-
tional terms caused by eliminatingRI andRII from Eq. (12):

FI = − ltrRTS ]1uW

]t
+ uW ·

]1uW

]rW
D , sA26d

FII = − ltp
]1

]rW
·uW . sA27d

It is worth mentioning that the term ofFI is of order Ma2

compared with the heat conduction. Hence, for thermal flows
in the incompressible limitsMa!1d, this term can be
dropped from Eq.(A25). As to FII, the zeroth moment of
gs1d, it has been shown that it does not vanish but is related to
the compression work only. In the incompressible limit, we
can also neglect this term. Therefore, we can rewrite the
macroscopic energy equation in the second order of« as

]2srcnTd
]t

=
]1

]rW
·Sk

]1T

]rW
D + PW

W
:
]1

]rW
uW . sA28d

In summary, combining Eqs.(A16)–(A18), (A23), (A24),
and (A28), we can obtain the macroscopic conservation
equations of mass, momentum, and energy:

]r

]t
+

]

]rW
· sruWd = 0, sA29d

]sruWd
]t

+
]

]rW
· sruWuWd = −

]

]rW
p +

]

]rW
· PW

W
, sA30d

]srcnTd
]t

+
]

]rW
· srcnuWTd =

]

]rW
·Sk

]T

]rW
D + PW

W
:

]

]rW
uW .

sA31d
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